Archive for the ‘Science’ Category:

Where on Earth is all the water? From the solar system to living things

Posted In: Science | Water
Facebooktwittergoogle_plusredditpinterestlinkedinmail

Earth is known as the blue planet, because it’s covered with quite a bit of water. But do you know where all that water on Earth is located? This interactive visualization will show the various amounts of water in its many forms on Earth: Oceans, Lakes, Rivers, Ice, Groundwater, etc….

If you hover over a part of the circular, sunburst graph, it will show you the amount of water that is in each of the various forms shown. If the label for that form is bolded, you can click on it and see further subdivisions beyond that broad category. For example, if you click on Oceans, it will show you how the water in the oceans is distributed among the five main oceans on Earth. As you move towards more focused views on the graph, you can click on the center of the circle to move back out to larger categories and see the big picture again.

As you can see, most of the water on Earth is found in a salty form, and most of that is in the oceans. It can be hard to click through to see freshwater lakes and rivers, as you have to be very precise to expand the “Surface Water” wedge, when you are looking at all “Freshwater”.

Even smaller, on that same visualization, is the “Living things” wedge is basically invisible. You can further explore the details of the living things category by clicking on the button that appears on the freshwater graph.

Checking the Group Rivers and Lakes checkbox will group rivers by continent and lakes by major groups.

It is interesting to see how much water there is on Earth (about 1.4 billion cubic kilometers of water), but how little of it is non-salty, liquid freshwater at the surface (about 100,000 cubic kilometers, though that is still quite a lot) but it only makes up about 0.008% of all water on Earth. That means for every 10,000 gallons of water on Earth, only one of those gallons is freshwater in a lake or river that we can easily access.

It is also believed that there is more water deep in the Earth’s interior (i.e. the mantle) than on the surface or near-subsurface, but estimates of that are highly uncertain and are not included in this graph.

If you click out past Earth’s water to look at water in the solar system, the estimates shown in this visualization are only including liquid water and do not include estimates of ice (which I haven’t been able to find estimates of). The amount of water in living things is estimated assuming that the ratio of organic carbon to liquid water is more or less the same across all different types of living things (i.e. viruses, bacteria, fungi, plants, animals, etc.). This isn’t a great assumption but the estimates, which come from estimates of the dry carbon weight of these organisms, vary across many orders of magnitude so being off in liquid water weight/volume by a factor of two or so isn’t a huge problem.

Tools and Data Sources
The sunburst chart is made using the open source, javascript Plot.ly graphing library. Data on water distributions is primarily from Wikipedia – Distribution of WaterList of Rivers by DischargeList of Lakes Weight of Living BiomassExtra-terrestrial water estimates

water on earth

Mercury is the closest planet to Earth (on average)

Posted In: Science
Facebooktwittergoogle_plusredditpinterestlinkedinmail

We all learned the order of planets in school. In my case using the mnemonic, My Very Excellent Mother Just Served Us Nine Pizzas (MVEMJSUNP) for Mercury, Venus, Earth, Mars Jupiter Saturn, Uranus, Neptune, and Pluto. Since Pluto has been demoted to a dwarf planet, you could change the Nine Pizzas to Noodles or something else.

And in terms of distances, Venus’s orbit (0.72 AU, or Astronomical Units (i.e. 1 AU is the distance from the Earth to the Sun) is closer to Earth’s orbit (1 AU by definition) than Mercury’s (varies between 0.31 and 0.47 AU because of it’s more elliptical orbit) or Mars’ (1.5 AU).

However, I saw an article, stating that Mercury might in fact be the closest planet to Earth (on average) so I thought I’d whip up a visualization that shows which planet is closest as a function of the planetary orbits around the sun.

Because of where the planets are on these orbital paths, and specifically the time it takes Mercury to orbit the sun, Mercury is the planet that is closest to Earth more often and has an average distance to Earth that is lower than the other 2 inner planets. Mars is occasionally the closest as well, but on average much further than Mercury or Venus. Also interesting is that Mercury is, on average, about 1 AU away from Earth, which is the same as the distance to the Sun.

This simulation shows how the planet positions vary each day over a 30 year period and the regularity with which the distance between Earth and the other varies over time. Mercury has the shortest period while Mars has the longest. You can change the speed of the simulation to speed up or slow down the orbits of the planets.

Data and Tools:
I thought about simulating the planets but there are plenty of tools out there that generate this orbital data so instead just downloaded ephemeris data (data related to positions of astronomical bodies) from NASA website.. I processed the data using javascript and drew the picture using HTML canvas tools and made the distance vs time plot with the Plotly open source plotting javascript library.

Mercury is closest planet to Earth

Speed and Kinetic Energy of Sports Pitches, Shots and Kicks

Posted In: Science | Sports
Facebooktwittergoogle_plusredditpinterestlinkedinmail

I’ve been playing (and watching) alot of soccer recently with the kids and it got me thinking about how hard the pros can kick the ball compared to us. This got me thinking about how much energy athletes can impart to a soccer ball and how that compares to balls and projectiles in other sports. This is not a scientific study, as I just googled the fastest pitch, shot, serve, kick, throw etc. from a variety of sports and the weight of the respective balls/projectiles to calculate their kinetic energy and momentum. I added in the stats for a (sort of) human projectile for comparison as well (Usain Bolt).

The graph is color coded so orange refers to projectiles that require no additional equipment, while the blue requires a bat or racket or club to aid in hitting the ball. You can toggle between log and linear scale on the x-axis to better see the differences between different projectiles.

The hammer throw is interesting because it far exceeds the kinetic energy and momentum of the other balls. If you watch a video of olympic hammer throws, you’ll see how much energy these very large, strong athletes are able to put into the throw. I think another aspect is that the top kinetic energy projectiles are all throws where there is significant acceleration of the projectile over a longer period of time rather than an instantaneous kick or hit.

Switching to the speed tab, all of the fastest projectiles are aided by equipment to achieve their very high speeds, but generally these projectiles have lower weights. This is also seen in the momentum tab, where the heavier projectiles are mostly unaided by equipment, probably because of the challenge of imparting enough momentum onto a heavy ball/projectile would require accelerating an even heavier racket/bat.

Equations and stuff

The equation for kinetic energy is \(E = {1\over2} mv^2\),
where E is kinetic energy (expressed in joules or kilojoules), m is mass and v is velocity (or speed).

The equation for momentum is \(P = mv\), where P is momentum.

The difference between momentum and kinetic energy is slightly tricky. The momentum rankings seem to prioritize the mass of the projectile while kinetic energy is a balance between speed (velocity) and mass. In kicking, throwing or hitting a ball/projectile, the player needs to put impart the energy into the ball. In a collision, total momentum of the system (player and ball) is conserved but kinetic energy is not, although total energy is (some energy may be “lost” as heat, sound, etc). In terms of being “hit” by the projectile, I believe that kinetic energy is probably more important than momentum for gauging the overall effect of the impact, but the total energy is not the only concern.The area over which the impact would occur is also important. Honestly, the table tennis (ping-pong) ball is the only one I think I’d be okay getting hit by (at least at these world record speeds).

Data sources and tools:
Mostly google for ball weights and trying to find some mention of the “fastest” throw or kick or whatever. Calculations are made using the equations above and plotted using Plot.ly javascript library.

Solar (Sun) Intensity By Location and Time

Posted In: Energy | Science
Facebooktwittergoogle_plusredditpinterestlinkedinmail

This visualization shows the amount of solar intensity (also called solar insolation and measured in watts per square meter) all across the globe as a function of time of day and day of year. This is an idealized calculation as it does not take into account reductions in solar intensity due to cloud cover or other things that might block the sun from reaching the earth (e.g dust and pollution).

As would be expected, the highest amount of solar intensity occurs on the globe right where the sun is overhead and as the angle of the sun lowers, the solar intensity declines. This is why the area around the equator and up through the tropics is so sunny, the sun is overhead here the most. If you click on the map you should see a popup of the intensity of sunlight at that location.

As the earth rotates over the course of a day, the angle of the sun changes and eventually the angle is so low, the sun is blocked by the horizon (this is sunset).

Instructions
  • The default is to show the sunlight intensity for the current date and time but you can change it by moving the sliders for hour or day.
  • You can also toggle between the orientation of the surface that you measure the sunlight on. The default shows the intensity of sunlight on a horizontal surface. The other option shows the intensity on a surface that is oriented to face the sun (i.e. perpendicular)

Again, the intensity will depend on the angle it makes with the sun and so it depends on your location on earth (i.e. latitude). Latitudes around the equator will receive more sunlight because their angle is closer to perpendicular.

Shifting through the days of the year, you can start to see the cause of the seasons as the amount of sunlight changes and more or less sunlight goes to each of the northern and southern hemispheres.

Calculations and Tools:
The calculations for solar intensity are based on equations from “Renewable and Efficient Electric Power Systems” by Gilbert Masters Chapter 7. Calculations were made using javascript and visualized using the Leaflet.js library with Open Street Map tiles.

This was a fun project for me to learn online mapping tools and programming.